
University of New Mexico

Shared Memory Parallelism
08/28/2020

University of New Mexico

Cache-Based Microprocessor

M
ai
n
m
em

or
y

M
em

or
y

in
te
rf
ac
e

L
2
u
n
ifi
ed

ca
ch
e L1 data

cache

L1 instr.
cache IN

T
/F

P
qu

eu
e

M
em

or
y

qu
eu
e

F
P
re
g

fi
le

IN
T

re
g

fi
le

FP
add

FP
mult

ST

LD

INT
op

shift
mask

University of New Mexico

Cache-Based Microprocessor

M
ai
n
m
em

or
y

M
em

or
y

in
te
rf
ac
e

L
2
u
n
ifi
ed

ca
ch
e L1 data

cache

L1 instr.
cache IN

T
/F

P
qu

eu
e

M
em

or
y

qu
eu
e

F
P
re
g

fi
le

IN
T

re
g

fi
le

FP
add

FP
mult

ST

LD

INT
op

shift
mask

Core

University of New Mexico

Shared Memory Processor

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

Core Core Core Core

University of New Mexico

Shared Memory Processor

Main Memory

Memory Interface

L2

L1D L1D L1D L1D

Core Core Core Core

L2 L2 L2

Main Memory

Memory Interface

L1D L1D

Core Core

L1D L1D

Core Core

L2

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3 Additional hardware required to keep multiple copies
 of data consistent with each other

When there are multiple copies of data
how to ensure different processes can operate

on data in manner that follows semantics

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x

Copies of x in shared memory,
held by P0, and held by P1

This variable is considered shared

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x
If one process changes it’s copy

other values are either:

1. Invalidated
2. Updated

Otherwise, P2 could work with
incorrect version of the data

University of New Mexico

Update Protocol

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x
Whenever data is written, all copies in system are updated

Excess overhead if P2 never uses x again

Communication : full cache line is written to main
memory and sent to P2

University of New Mexico

Invalidate Protocol

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x P0 marks x as dirty, invalidating values stored on
P2 and in main memory

Invalidates cache line on first update

If P0 updates x again, or other values on same
cache line, P2 doesn’t need to know

Typically the process that is used today

University of New Mexico

False Sharing

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x y
P0 stores to x
P2 stores to y

What if x and y are on the same cache line?

System only invalidates / updates by cache line
Can’t detect the updates aren’t actually the same

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x

Processes P0 and P2 hold copies of x
Here, x is shared

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x

Processes P0 holds a dirty variable
P2 holds an invalid variable

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x

If P0 loads x:
Attempts to fetch from main memory

Main memory has variable marked as dirty by P0
P0 services the request

University of New Mexico

Cache Coherence

Main Memory

Memory Interface

L2 Cache L2 Cache

L1D L1D L1D L1D

P0 P1 P2 P3

x

x x

Now, back to shared state

University of New Mexico

Threads

• A thread is a single stream of control in the flow of a program

• An independent sequence of instructions

• n^2 different threads that can be executed independently

For I = 0 to n:
 For j = 0 to n:
 C[i][j] = dot_poduct(get_row(a, i), get_col(b, j)

University of New Mexico

Threads
• A thread is a single stream of control in the flow of a program

• An independent sequence of instructions

• n^2 different threads that can be executed independently

• Underlying system schedules the threads across the processes

For I = 0 to n:
 For j = 0 to n:
 C[i][j] = get_thread(dot_poduct(get_row(A, i), get_col(B, j))

University of New Mexico

Threads

• Each thread must have access to matrices A, B, C

• Use shared main memory to accomplish this

• All of main memory is globally accessible by each thread

• All function calls within a thread are visible only to the thread

• Values accessed by threads are stored locally

For I = 0 to n:
 For j = 0 to n:
 C[i][j] = get_thread(dot_poduct(get_row(A, i), get_col(B, j))

University of New Mexico

Why threads?
• Software Potability : threaded applications can be developed in serial (on

single core machines)

• Can run on parallel machines without any changes

• Not architecture dependent

• Latency Hiding : Memory access latency is a big bottleneck, both in serial
and parallel codes. When multiple threads can execute on a single
process, this latency can be hidden (while one process is accessing
memory, another is performing operations)

University of New Mexico

Why threads?

• Scheduling / Load Balancing : parallel applications require programmer to
split up data evenly so each process has same amount of work.
Sometimes this is easy, but very difficult in unstructured or dynamic codes

• Ease of programming : Easier than MPI

• Widespread Use

